
ASTRO+ DATABASE

USER MANUAL

(v1.0 November 2024)

Amparo Marco and the ASTRO+
team

0. Astro+: The largest High Mass Star Database.
In this database, you can upload and restore your own spectra of high mass stars and
besides search spectra of a large amount of these stars. All data will automatically be
archived with their parameters from Simbad and Gaia. In addition, you may obtain their
physical parameters calculated in a homogeneous way by using local programs (see
Rubke et al. 2022).

1. Access to the webpage:
https:// astroplus.ua.es

2. Register: The first time you access the database, you must apply for a user account.
You will receive this information from the administrator to sign in.

3. Login: Username and password

4. Go to Upload: You choose the data format to upload your data.

4a. FITS Configuration:

FITS (Flexible Image Transport System) is the data format most widely used within
astronomy for transporting, analyzing, and archiving scientific data files and is designed to
store scientific data sets consisting of multidimensional arrays (images) and 2-dimensional
tables organized into rows and columns of information.
The FITS file format allows for much flexibility in how data is stored and accessed.
Depending on the complexity of a given telescope and instrument setup, spectroscopic
observations may be stored in a myriad of different ways and each professional
observatory uses a different method to store such observations. This situation creates
multiple issues when one attempts to compile large sets of data originating from different
observatories and instruments. To get around these complications, the ASTRO+ database
defines several standard FITS data structures to allow users to upload files correctly and
consistently to the database.
To define these file types, the standards documented by the IAU FITS standard working
group are followed as much as possible.

A FITS file is comprised of segments called Header/Data Units (HDUs):

1. The first HDU is called the `Primary HDU', or `Primary Array'. The primary data array
can contain a 1-999 dimensional array of 1, 2 or 4 byte integers or 4 or 8 byte floating point
numbers using IEEE representations. A typical primary array could contain a 1-D
spectrum, a 2-D image, or a 3-D data cube. In the ASTRO+ database, we only allow the
upload of 1-D spectra.

2. Any number of additional HDUs may follow the primary array. These additional HDUs
are referred to as FITS `extensions'. Three types of standard extensions are currently
defined:

 Image Extensions contain a 0-999 dimensional array of pixels, similar to a primary
array
(header begins with EXTENSION = 'IMAGE ')

 ASCII Table Extensions store tabular information with all numeric information stored
in ASCII formats. While ASCII tables are generally less efficient than binary tables,

https://fits.gsfc.nasa.gov/fits_standard.html
https://fits.gsfc.nasa.gov/fits_standard.html

they can be made relatively human readable and can store numeric information with
essentially arbitrary size and accuracy (e.g., 16 byte reals).
(header begins with EXTENSION = 'TABLE ')

 Binary Table Extensions store tabular information in a binary representation. Each
cell in the table can be an array, but the dimensionality of the array must be
constant within a column. The strict standard supports only one-dimensional arrays,
but a convention to support multi-dimensional arrays is widely accepted.
(header begins with EXTENSION = 'BINTABLE')

A FITS file composed of only the primary HDU is sometimes referred to as a Basic FITS
file, or a Single Image FITS (SIF) file [only Extension 0], and a FITS file containing one or
more additional HDUs called FITS extensions following the primary HDU is sometimes
referred to as a Multi-Extension FITS (MEF) file [Extension 0, Extension 1, Extension 2,
Extension 3 …]. Each extension or additional HDU has a header (mandatory) and
optionally one (single data array) or more data blocks (multiple data arrays) containing
data as well. These data blocks can be defined with specific names: WAVE, FLUX,
ERROR in the columns of a table or with no names.

At this point, we need to study the structure of our FITS data before continuing. With this
purpose, we can use the following sentences in the iPython code:

In [1]: from astropy.io import fits

In [2]: fitin=fits.open("FITS filename")

In [3]: fitin.info()

In [4]: fitin[Number of extension].data

In [5]: fitin[Number of extension].columns

In [6]: fitin[Number of extension].header

--

In [3]: fitin.info() we obtain the number of extensions. In each extension, we can explore
the data, columns and header using the following sentences:

In [4]: fitin[Number of extension].data

In [5]: fitin[Number of extension].columns

In [6]: fitin[Number of extension].header

Next, we describe the characteristics of 10 different examples from spectra coming from a
variety of observatories:

Example 1

In [3]: fitin.info()

No. Name Ver Type Cards Dimensions Format

- 0 PRIMARY 1 PrimaryHDU 215 (400,) float32 (only extension 0)

In [4]: fitin[0].data

- array([3434.2231, 3436.472 , 3389.4485, 3465.2449, 3454.6982, 3393.2725,

…………………………………………………………………………………,

3255.3958, 3231.2266, 3293.1692, 3373.4382], dtype=float32) (only one array containing
the flux)

In [5]: fitin[0].columns

- 'PrimaryHDU' object has no attribute 'columns' (no names in columns). In this case, we
have to explore the names of the parameters: Ref. Position and Pixel Scale with the next
command as well.

In [6]: fitin[0].header

We explore the names of the following parameters:

Main_ID: Object

RA: RA

DEC: DEC

Observation Date: DATE

Telescope: TELESCOP

Instrument: INSTRUME

Exposure Time: EXPTIME

--

Ref. Position: CRVAL1

Pixel Scale: CDELT1 or CD1_1

Example 2

In [3]: fitin.info()

No. Name Ver Type Cards Dimensions Format

- 0 PRIMARY 1 PrimaryHDU 213 () (extension 0)

- 1 1 ImageHDU 35 (1023,) float32 (extension 1)

In [4]: fitin[1].data (we have data only in extension 1)

array([1.0274824 , 1.0468955 , 1.0186049 , ..., 0.8481021 , 0.85893154,

0.8707505], dtype=float32)

In [5]: fitin[1].columns

- '1 ImageHDU' object has no attribute 'columns' (no names in columns). In this case, we
have to explore the name of the parameters: Ref. Position and Pixel Scale with the next
command as well.

In [6]: fitin[0].header (Ext 0 contains only the old header)

In [6]: fitin[1].header (Ext 1 contains the new header where we find the names of the
following parameters)

Main_ID: Object

RA: RA

DEC: DEC

Observation Date: DATE-OBS

Telescope: TELESCOP

Instrument: INSTRUME

Exposure Time: EXPTIME

--

Ref. Position: CRVAL1

Pixel Scale: CDELT1 or CD1_1

Example 3

In [3]: fitin.info()

No. Name Ver Type Cards Dimensions Format

- 0 PRIMARY 1 PrimaryHDU 167 (155404, 2) float64 (only extension 0)

In [4]: fitin[0].data

array([[2.1376055 , 2.1372672 , 2.1369289 , ..., 1.0182667 , 1.02216799,

1.0271952],

[0. , 0. , 0. , ..., 0.47679529, 0.47863132,

0.48099464]]) (two arrays containing the flux and flux_error)

In [5]: fitin[0].columns

'PrimaryHDU' object has no attribute 'columns' (notnames in columns). In this case, we
have to explore the name of the parameters: Ref. Position and Pixel Scale wiht the next
command as well.

In [6]: fitin[0].header

We explore the names of the following parameters:

Main_ID: Object

RA: RA

DEC: DEC

Observation Date: DATE-OBS

Telescope: TELESCOP

Instrument: INSTRUME

Exposure Time: EXPTIME

--

Ref. Position: CRVAL1

Pixel Scale: CDELT1 or CD1_1

Example 4

In [3]: fitin.info()

No. Name Ver Type Cards Dimensions Format

- 0 PRIMARY 1 PrimaryHDU 472 (335519,) float64 (extension 0)

- 1 INSTRUMENTCONFIG.XML 1 BinTableHDU 11 173R x 1C [1020A] (extension
1)

In [4]: fitin[0].data

array([nan, nan, nan, ..., 2058.63569211,

2023.55079739, 1935.64915593]) (we have data only in extension 0; one array
containing flux)

In [4]: fitin[1].data

uded) with first pixel counted as 1',),

('
<middleCcdRowOrderPositions>middleCcdRowOrderPositions.fits</middleCcdRowOrder
Positions>',),

(' \t</LRF_WRF>',), (' \t</values>',),

('</pipeline>',)], dtype=(numpy.record, [('xml', 'S1020')])) (one table with information
about the configuration of the observation)

In [5]: fitin[0].columns

'PrimaryHDU' object has no attribute 'columns' (no names in columns). In this case, we
have to explore the name of the parameters: Ref. Position and Pixel Scale with the next
command as well.

In [5]: fitin[1].columns

ColDefs(

name = 'xml'; format = '1020A' (Information about the table format)

In [6]: fitin[0].header

We explore the names of the following parameters:

Main_ID: Object

RA: RA

DEC: DEC

Observation Date: DATE

Telescope: TELESCOP

Instrument: INSTRUME

Exposure Time: EXPTIME

--

Ref. Position: CRVAL1

Pixel Scale: CDELT1 or CD1_1

Example 5

In [3]: fitin.info()

No. Name Ver Type Cards Dimensions Format

- 0 FLUX 1 PrimaryHDU 593 (12854,) float32 (extension 0)

- 1 ERRS 1 ImageHDU 23 (12854,) float32 (extension 1)

- 2 QUAL 1 ImageHDU 23 (12854,) int32 (extension 2)

In [4]: fitin[0].data

array([-5.1916034e-15, 4.8787698e-14, -7.1954798e-14, ...,

1.0968022e-14, 1.1460177e-14, 1.1645745e-14], dtype=float32) (one array
containing the flux)

In [4]: fitin[1].data

array([1.5614693e-13, 7.2924644e-14, 7.2841107e-14, ..., 2.7457476e-16,

2.7599531e-16, 2.7777667e-16], dtype=float32) (one array containing the flux error)

In [4]: fitin[2].data

Out[22]: array([0, 0, 0, ..., 0, 0, 0], dtype=int32) (one array without data)

In [5]: fitin[0].columns

'PrimaryHDU' object has no attribute 'columns' (no names in columns). In this case, we
have to explore the name of the parameters: Ref. Position and Pixel Scale with the next
command as well.

In [5]: fitin[1].columns

'ImageHDU' object has no attribute 'columns' (no names in columns). In this case, we
have to explore the name of the parameters: Ref. Position and Pixel Scale with the next
command as well.

In [5]: fitin[2].columns

'ImageHDU' object has no attribute 'columns' (no names in columns). In this case, we
have to explore the name of the parameters: Ref. Position and Pixel Scale with the next
command as well.

In [6]: fitin[0].header

We explore the names of the following parameters:

Main_ID: Object

RA: RA

DEC: DEC

Observation Date: DATE

Telescope: TELESCOP

Instrument: INSTRUME

Exposure Time: EXPTIME

--

Ref. Position: CRVAL1

Pixel Scale: CDELT1 or CD1_1

Example 6

In [3]: fitin.info()

No. Name Ver Type Cards Dimensions Format

- 0 PRIMARY 1 PrimaryHDU 215 (4200, 1, 2) float32 (extension 0)

In [4]: fitin[0].data

array([[[1. , 1. , 1. , ..., 1. ,

1. , 1.]],

[[-71.858635, -71.86063 , -71.8626 , ..., -93.83298 ,

-96.106705, -90.92938]]], dtype=float32) (We have 2 arrays containing normalized
flux and flux_error; each array is enclosed by a double square bracket)

In [5]: fitin[0].columns

'PrimaryHDU' object has no attribute 'columns' (no names in columns). In this case, we
have to explore the name of the parameters: Ref. Position and Pixel Scale with the next
command as well.

In [6]: fitin[0].header

We explore the names of the following parameters:

Main_ID: Object

RA: RA

DEC: DEC

Observation Date: DATE

Telescope: TELESCOP

Instrument: INSTRUME

Exposure Time: EXPTIME

--

Ref. Position: CRVAL1

Pixel Scale: CDELT1 or CD1_1

Example 7

In [3]: fitin.info()

No. Name Ver Type Cards Dimensions Format

- 0 PRIMARY 1 PrimaryHDU 419 (2860,) float64 (extension 0)

- 1 SKY SUBTRACTED 1 ImageHDU 11 (2860,) float64 (extension 1)

- 2 MEDIAN SKY 1 ImageHDU 11 (2860,) float64 (extension 2)

- 3 PROCESSED ERROR 1 ImageHDU 11 (2860,) float64 (extension 3)

- 4 ORIGINAL ERROR 1 ImageHDU 11 (2860,) float32 (extension 4)

- 5 FIBER_SETUP 1 BinTableHDU 37 126R x 14C [1J, 1J, 1J, 1J, 1J, 11A, 1J, 6A,
1D, 1D, 1D, 1D, 1D, 1D] (extension 5)

In [4]: fitin[0].data

array([647.77288437, 646.16413498, 650.79735184, ..., 447.62348175,

426.9555397 , 428.03517532]) (one array containing flux)

In [4]: fitin[3].data

array([27.82828034, 33.53277702, 33.51065329, ..., 20.81859773,

19.33348236, 20.72485267]) (one array containing processed flux_error)

In [4]: fitin[4].data

array([24.649857, 25.01904 , 24.849052, ..., 19.061787, 18.606007,

18.95015], dtype=float32) (one array containing original flux_error)

In [5]: fitin[0].columns

'PrimaryHDU' object has no attribute 'columns' (no names in columns). In this case, we
have to explore the name of the parameters: Ref. Position and Pixel Scale with the next
command as well.

In [5]: fitin[3].columns

'PrimaryHDU' object has no attribute 'columns' (no names in columns). In this case, we
have to explore the name of the parameters: Ref. Position and Pixel Scale with the next
command as well.

In [5]: fitin[4].columns

'PrimaryHDU' object has no attribute 'columns' (no names in columns). In this case, we
have to explore the name of the parameters: Ref. Position and Pixel Scale with the next
command as well.

In [6]: fitin[0].header

We explore the names of the following parameters:

Main_ID: Object

RA: RA

DEC: DEC

Observation Date: DATE

Telescope: TELESCOP

Instrument: INSTRUME

Exposure Time: EXPTIME

--

Ref. Position: CRVAL1

Pixel Scale: CDELT1 or CD1_1

Example 8

In [3]: fitin.info()

No. Name Ver Type Cards Dimensions Format

- 0 PRIMARY 1 PrimaryHDU 278 (215930, 2) float64 (extension 0)

In [4]: fitin[0].data

array([[1.33151500e+00, 7.01154950e-01, 3.61924034e-01, ...,

-1.37273511e+02, -1.37279891e+02, -1.37286271e+02],

[5.29002964e-01, 2.78829843e-01, 1.44063950e-01, ...,

8.36747214e-02, 8.84862766e-02, 9.27733853e-02]]) (two arrays containing flux
and flux error)

In [5]: fitin[0].columns

'PrimaryHDU' object has no attribute 'columns' (no names in columns). In this case, we
have to explore the name of the parameters: Ref. Position and Pixel Scale with the next
command as well.

In [6]: fitin[0].header

We explore the names of the following parameters:

Main_ID: Object

RA: RA

DEC: DEC

Observation Date: DATE

Telescope: TELESCOP

Instrument: INSTRUME

Exposure Time: EXPTIME

--

Ref. Position: CRVAL1

Pixel Scale: CDELT1 or CD1_1

Example 9

In [3]: fitin.info()

No. Name Ver Type Cards Dimensions Format

- 0 PRIMARY 1 PrimaryHDU 3347 () (extension 0)

- 1 SPECTRUM 1 BinTableHDU 46 1R x 3C [313162D, 313162E, 313162E]
(extension 1)

In [4]: fitin[1].data

dtype=(numpy.record, [('WAVE', '>f8', (313162,)), ('FLUX', '>f4', (313162,)), ('ERR', '>f4',
(313162,))])) (in extension 0, we have no data; extension 1 contains 3 arrays with
wavelength, flux and flux error)

fitin[1].data.field('WAVE')

array([[3781.31, 3781.32, 3781.33, ..., 6912.91, 6912.92, 6912.93]])

(the array is formed by a growing sequence of numbers)

fitin[1].data.field(‘FLUX')

array([[-86.441864, 50.30547 , 219.69885 , ..., 150.27798 , 98.98375 ,

70.85126]], dtype=float32)

fitin[1].data.field('ERR')

array([[nan, nan, nan, ..., nan, nan, nan]], dtype=float32)

In [5]: fitin[1].columns

ColDefs(

name = 'WAVE'; format = '313162D'; unit = 'Angstrom'

name = 'FLUX'; format = '313162E'; unit = 'adu'

name = 'ERR'; format = '313162E'; unit = 'adu'

) (The columns are defined with names: WAVE, FLUX and ERR)

In [6]: fitin[0].header

We explore the names of the following parameters:

Main_ID: Object

RA: RA

DEC: DEC

Observation Date: DATE

Telescope: TELESCOP

Instrument: INSTRUME

Exposure Time: EXPTIME

Example 10

In [3]: fitin.info()

No. Name Ver Type Cards Dimensions Format

0 PRIMARY 1 PrimaryHDU 13 ()

1 1 ImageHDU 7 (141391, 3) float64

2 1 ImageHDU 141 ()

In [4]: fitin[1].data

array([[3.70385693e+03, 3.70388216e+03, 3.70390739e+03, ...,

7.27113753e+03, 7.27116276e+03, 7.27118799e+03],

[7.46043223e-01, 8.49061882e-01, 8.98117545e-01, ...,

1.08175183e+03, 1.08182535e+03, 1.08189886e+03],

[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,

0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]) (in extensions 0 and 2, we
have no data; extension 1 contains 3 arrays with wavelength, flux and flux error without
data.The first array which correspond to the wavelength is formed by a growing sequence
of numbers).

In [5]: fitin[1].columns

'ImageHDU' object has no attribute 'columns' (no names in columns).

--

Once we know the structure of our FITS files, we are ready to upload the spectra using the
parameters found above

4a.1 Units: choose the units of wavelength in the spectrum. There are different units for
the wavelength scale

4a.2 Type of data: choose between: Normalized; Not Normalized; Flux calibrated. There
are three different data types for your spectra

4a.3 Batch Name: choose the name for your data in the upload. It is the visible name for
the whole data block (one or more spectra) uploaded every time

4a.4 Configuration Templates: choose between Custom or 3 options corresponding to
different observatories or telescopes: ESO, NOT and Mercator, WHT and INT. There are
some template examples to help the upload of spectra with standard configurations
corresponding to different observatories or telescopes. They can be modified to fit the
structure of your data

4a.5 FITS Configuration_1 Header: You must check that your file header is not empty
and that it contains the following parameters and in which extension: MAIN_ID; RA; DEC;
OBSERVATION DATE; TELESCOPE; INSTRUMENT; EXPOSURE TIME. You must write
their exact names from your file header in the white spaces. Having this information, you
can continue. If your file header is empty, you must use the original FITS files from which
the spectrum was extracted, which contain a non-empty file header, and add the header
information to the FITS files you are trying to upload. The following program in python
“Recover_header.py” can be used to add this information to the final FITS files. This
program is provided with this document. You can also add keywords to the header by
hand.

4a.6 FITS Configuration_2 Wavelength:

4a.6.1 If you have column names defining your data, you choose Array Method and write
in the white space the name of the wavelength column used in the appropriate extension.

4a.6.2 If the data in a given extension comes as a single data array corresponding to the
wavelength (flux is another in extension), we must select Single data. If, on the contrary,
we have two or more data arrays, corresponding to dimension 0 (first array), dimension 1
(second array), etc …, we choose the Dimension for the wavelength data array. This
array can be easily identified because it contains a monotonosly increasing sequence of
numbers.

4a.6.3 If your data do not contain names in columns or there is no array corresponding to
wavelength, you must choose the Keyword Method. Choose the Wavelength extension
(as a general rule, it is in the same extension as the flux) and write in the white spaces the
names of Ref. Position and Pixel scale from the file header.

4a.7 FITS Configuration_3 Flux:

4a.7.1 Select the Flux Extension. If in this extension there is a single data array
corresponding to the flux, we must select Single data. If, on the contrary, we have two or
more data arrays,, corresponding to dimension 0 (first array), dimension 1 (second array),
etc …, we choose the Dimension for the flux data array.

Select the Flux Error. If in this extension there is a single data array corresponding to the
error flux, we must select Single data. If, on the contrary, we have two or more data
arrays, corresponding to dimension 0 (first array), dimension 1 (second array), etc …, we
choose the Dimension for the error flux data array. In some cases, there is no Flux Error
associated with the data, and then we select None.

4a.7.2 If you have column names defining your data, you choose Array Method and write
in the white spaces the name of the Flux and Flux Error columns used in the appropriate
extensions. In some cases, there is no Flux Error associated with the data, and then we
select None.

4a.8. Upload. We load the FITS spectra with the configuration selected in the template
from the Browser and upload them.

4b. ASCII Configuration:
4b.1 Units: choose the units of wavelength in the spectrum. There are different units for
the wavelength scale

4b.2 Type of data: choose between: Normalized; Not Normalized; Flux calibrated. There
are three different types data for your spectra

4b.3 Batch Name: choose the name for your data in the upload. It is the visible name for
the whole data block (one or more spectra) uploaded every time

4b.4 Upload files:

4b.4.1 Download ASCII Parameters Template and then fill the different fields. There are
some mandatory fields: FILENAME; MAIN_ID; DATE_OBS; RA; DEC; TELESCOP;
INSTRUME; EXPTIME. We can write the parameters for all spectra in the same template.

4b.4.2 Finally, Drag and drop the csv header and ascii files selecting from the Browser

5. Go to Upload tracking. We can visualize the state of the upload process: Processing;
Processed with errors and Successfully processed. When the spectra are processed,
we open Details. If the result is Processed with errors, we go to the Batch Info and
read the log details. We have to understand the errors and correct them in the option
Reprocess. But if the process is Success, we go to Resolution and write the
approximate spectral resolution of your data in the white space. Then, we can visualize the
spectra, as well as associated data and sky map from Simbad. When everything is alright,
we only have to wait for the response of the administrator, who has to authorize the upload
to the public server.

APENDIX

UPLOADING SPECTRA FROM DIFFERENT TELESCOPES+INSTRUMENTS.

The following configurations correspond to the above examples with different headers:

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

Example 8

Example 9

Example 10

